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Abstract: Epilepsy is a common neurological disorder that occurs at all ages. Epilepsy not only brings physical pain to patients,
but also brings a huge burden to the lives of patients and their families. At present, epilepsy detection is still achieved through
the  observation  of  electroencephalography  (EEG)  by  medical  staff.  However,  this  process  takes  a  long  time  and  consumes
energy, which will create a huge workload to medical staff. Therefore, it is particularly important to realize the automatic detec-
tion of  epilepsy.  This  paper introduces,  in detail,  the overall  framework of  EEG-based automatic epilepsy identification and the
typical  methods  involved  in  each  step.  Aiming  at  the  core  modules,  that  is,  signal  acquisition  analog  front  end  (AFE),  feature
extraction and classifier selection, method summary and theoretical explanation are carried out. Finally, the future research direc-
tions in the field of automatic detection of epilepsy are prospected.
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1.  Introduction

Epilepsy  is  a  brain  disorder  that  occurs  due  to  hypersyn-
chronous  firing  of  neurons  in  the  brain,  an  abnormal  electri-
cal  activity  of  the  brain.  Epilepsy,  characterized  by  involun-
tary  body  movements,  loss  of  consciousness,  and  loss  of
bowel or bladder control, is the most common chronic neuro-
logical  disorder[1].  According  to  written  records,  epilepsy  has
a  long  history.  The  word  "epilepsy"  appeared  in  4000  BC.  Up
to  now,  about  50  million  people  suffer  from  epilepsy  around
the  world.  Sudden  seizures  of  epilepsy  may  occur  in  various
unexpected situations. For example, when the seizure occurs,
if the patient is in an area near water, and the patient acciden-
tally  falls  into  the  water  due  to  uncontrollable  body  control,
this  could  result  in  the  serious  consequence  of  drowning.  In
addition,  epilepsy  patients  may  also  have  speech  disorders,
memory  loss,  depression  and  other  psychological  disorders,
which may even threaten the patient's health in severe cases.
Due  to  the  severity  of  epilepsy,  it  is  of  great  clinical  signifi-
cance to diagnose and detect epilepsy in time to minimize its
threat to human life[2].

Detecting  epileptic  seizures  as  early  as  possible,  giving
appropriate  and  reasonable  treatment,  and  timely  manual
intervention before the seizure or recurrence, can bring more
treatment possibilities  to  epilepsy patients  and alleviate  their
symptoms.  According  to  the  abnormal  repetitive  neural  dis-
charge  characteristics  in  the  epileptic  focus  during  the  onset
of epilepsy, doctors can detect the onset of epilepsy by observ-
ing  the  discharge  phenomenon  of  the  patient's  brain.  Elec-
troencephalography  (EEG)  monitors  the  electrical  function  of

the  brain.  Epilepsy  can  be  effectively  studied  by  generating
multidimensional  time  series  from  EEG  recordings  that  are
complex,  non-stationary,  nonlinear,  and  random.  EEG  can  be
divided  into  diagnostic,  localization,  and  monitoring  applica-
tions.  As  an  effective  means  of  monitoring  epileptic  seizures,
EEG is widely used clinically.

At  present,  such EEG analysis  work is  mainly through the
doctor's  visual  inspection  and  manual  labeling[3],  but  this
kind of  inspection has  limitations,  mainly  reflected in:  (1)  The
onset  time  and  duration  of  epileptic  seizures  are  still  uncer-
tain;  it  is  very difficult  to read and analyze the data of epilep-
tic  seizures  from  a  large  amount  of  EEG  data,  and  the  analy-
sis  process  relies  heavily  on  the  subjective  judgment  of  the
examiner.  (2)  There is  a large demand for professionals;  there
are many patients who need to be diagnosed with EEG. To con-
firm epilepsy patients among many patients,  more diagnosti-
cians are needed. Under the pressure of heavy workload, doc-
tors  may  cause  false  detection  and  missed  detection  for  the
diagnosis  of  epileptic  seizures.  (3)  It  requires  clinical  profes-
sional diagnostic personnel to have extensive knowledge and
experience in clinical diagnosis. Since the EEG will collect back-
ground  noise  at  the  same  time  during  the  acquisition  pro-
cess, it will increase the difficulty of manual inspection.

Generally  speaking,  patients  with  different  types  of  ill-
nesses have different symptoms during seizures.  Therefore,  it
is  extremely  important  to  fully  understand  the  onset  pat-
terns  of  epilepsy  patients.  However,  the  classification  of
epilepsy  is  a  time-consuming  and  tedious  task,  which  places
a heavy burden on clinicians. In view of this, people are work-
ing hard to develop an automatic detection system to reduce
the  workload  to  assist  neurologists  in  detecting  EEG  signals
during epileptic seizures and relieve the burden on physicians.

A flowchart of EEG-based automatic epilepsy detection is
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shown in Fig. 1. The core problem of epilepsy automatic detec-
tion can be summarized into three sub-problems: signal acqui-
sition,  feature extraction and classifier  design.  This  article  will
summarize  the  current  research  progress  at  home  and
abroad  from  these  three  aspects,  and  combine  the  current
challenges  in  this  field,  and  look  forward  to  the  future
research  direction,  in  order  to  provide  a  useful  reference  for
research in this field. The main contributions of this paper are
as follows: (1) A summary of the analog front-end (AFE) equip-
ment  based  on  EEG  signal  acquisition.  (2)  A  comprehensive
introduction  to  four  common  features  of  time  domain,  fre-
quency domain, time-frequency domain and nonlinear analy-
sis.  (3)  The  classification  methods  in  epilepsy  detection  are
summarized  in  detail.  (4)  Suggestions  and  prospects  are
given  for  future  research  directions  in  the  field  of  epilepsy
automatic detection. 

2.  EEG basics

EEG  is  a  map  of  electrical  potential  activity  that  demon-
strates spontaneous, continuous, and rhythmic electrical poten-
tial changes in neurons in the brain. It can display the physio-
logical,  psychological  and  disease  information  of  the  human
body.  Due  to  its  low  cost  and  real-time  characteristics,  EEG
has been widely used in the medical field. So far, EEG technol-
ogy has already become one of the important means of clini-
cal detection.

The EEG signal is a non-stationary signal with the charac-
teristics  of  suddenness  and  randomness.  According  to
research,  the  analysis  frequency  range  of  EEG  signals  is
between 0.5 and 100 Hz,  and most of  them are concentrated
in 0.5−70 Hz. According to frequency, normal EEG signals can
be divided into four bands: δ, θ, α, β and γ waves, where differ-
ent  frequency  bands  of  EEG  reflect  different  states  of  the
brain.

(1) δ wave: It is mainly distributed in the frequency range

between  0.5  and  3  Hz,  and  the  amplitude  of  the  signal  is
between  20  and  200 μV.  Its  amplitude  is  often  the  highest,
while  the  waveform  is  the  slowest.  This  waveform  is  mainly
concentrated  in  the  areas  of  the  frontal  and  occipital  lobes
and occurs mainly during deep sleep or deep anesthesia.

(2) θ wave: It is mainly distributed in the frequency range
between  4  and  7  Hz,  and  the  amplitude  of  the  signal  is
between  20  and  150 μV.  According  to  research,  this  band
mainly  appears  in  the  frontal  and  parietal  regions  and  usu-
ally appears in early childhood. This waveform may occur dur-
ing  sleepiness  and  arousal  phases  in  older  children  and
adults. In addition, this wave can also appear when encounter-
ing difficulties or  feeling depressed,  which is  primarily  associ-
ated with relaxation, meditation and creativity.

(3) α wave: It is mainly distributed in the frequency range
between  8  and  13  Hz,  and  the  amplitude  of  the  signal  is
between  20  and  100 μV.  This  waveform  is  different  from  the
previous  waveforms  in  the  distribution  range,  and  exists  in
multiple regions of the brain,  but it  is  mainly concentrated in
the  top  and  occipital  regions  of  the  brain.  This  waveform
appears when the eyes are closed or relaxed, and fades away
when the eyes  are  open or  mentally  drained.  When the state
of  thinking  is  suddenly  interrupted  by  external  stimuli,  the
wave  will  disappear  quickly.  This  phenomenon  is  usually
called the wave-blocking phenomenon.

(4) β wave: It is mainly distributed in the frequency range
between  14  and  30  Hz,  and  the  amplitude  of  the  signal  is
between 5 and 20 μV.  This  wave mainly occurs in the frontal,
parietal  and  central  regions  of  the  brain.  This  wave  is  often
associated  with  active,  busy  or  anxious  thinking  and  active
attention,  and  is  strongly  associated  with  motor  behavior,
attenuating  during  active  movement.  Studies  have  found
that this wave often occurs during the day in a state of waking
consciousness. At the same time, because it is related to imagi-

 

Fig. 1. (Color online) A flowchart of EEG-based automatic epilepsy detection.
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nary EEG signals,  it  is  of  great  significance in the field of  EEG.
(5)  γ  wave:  It  is  mainly  distributed in  the frequency band

greater  than 30  Hz,  and  the  amplitude  of  the  signal  is  less
than  20 μV.  This  wave  mainly  occurs  in  the  frontal  and  pari-
etal  regions  of  the  brain,  during  extreme  hyperactivity,  or
when  neuronal  excitation  is  greatly  increased.  However,  it  is
generally  considered  that  this  wave  has  little  to  do  with  the
characteristics of the EEG signal, so in the research of process-
ing EEG signals, the high frequency is usually filtered.

Epilepsy is a chronic neurological disease caused by exces-
sive  discharge  of  central  neurons.  EEG  signals  during  epilep-
tic  seizures  are  quite  different  from  normal  conditions.  The
waveform,  amplitude,  frequency  and  other  characteristics  of
EEG  signals  are  often  used  to  distinguish  epileptic  signals
from  non-epileptic  signals.  At  present,  the  most  important
way  is  to  use  the  waveform  changes  in  the  EEG  to  detect
epilepsy  signals,  so  as  to  carry  out  further  treatment.  During
the  course  of  the  research,  it  was  found  that  sharp  waves,
spike  waves,  and  multi-spike  slow  waves  usually  appear  dur-
ing epileptic seizures. 

3.  EEG acquisition equipment

As  early  as  the  late  18th  century,  scientists  demon-
strated  that  certain  animals  were  capable  of  generating  bio-
electric  waveforms[4],  and  by  the  end  of  the  19th  century,  it
was possible to measure human potentials such as electrocar-
diography  (ECG),  EEG,  and  electromyography  (EMG),  yet
these  techniques  were  not  commonly  used  in  clinical  prac-
tice until  the 1940s and 1950s. As the most complex organ in
the human body, the brain has been a field of relentless explo-
ration  for  scientists,  and  EEG  signals  are  one  of  the  critical
keys to this amazing field.

The  first  human  detection  of  EEG  signals  on  the  surface
of the scalp was in 1924, when Hans Berger, Professor of Neu-
rology  at  the  University  of  Jena,  Germany,  discovered  alpha
brain waves from the scalp of young children. Initially,  Berger
used  two  platinum  needle-like  electrodes  inserted  into  the
cerebral  cortex  at  the  site  of  the  subject's  skull  injury  to
acquire  signals,  but  later,  after  repeated  trials,  it  was  demon-
strated  that  EEG  signals  could  be  acquired  through  elec-
trodes  from  the  superficial  skin  of  the  scalp  without  the
insertion of invasive electrodes, making this non-invasive EEG
acquisition  technique  more  suitable  for  wearable  device
applications.

In  order  to  obtain  the  EEG  signal,  the  sensor-electrode
can be used to collect the signal and transmit the data to the
back-end system for  further  processing[5].  However,  since the
EEG  signal  is  an  extremely  weak  neurophysiological  signal,
there are certain requirements  for  the amplification and anti-
interference  ability  of  the  acquisition  system.  It  is  necessary
to  ensure  that  the  signal-to-noise  ratio (SNR)  does  not  affect
the subsequent analysis, and it must have a high enough reso-
lution.  At  the  same  time,  the  EEG  signal  reflects  the  change
of  the  instantaneous  local  field  potential  of  the  neuron  neu-
ral activity, so the requirement for time resolution is also very
high.  Therefore,  the  hardware  acquisition  system  must  meet
the  requirements  of  high  resolution  and  high  sampling
rate[6].  In  high-density  EEG  signal  acquisition  scenarios,  high
resolution and high sampling rate  acquisition  will  generate  a
large  amount  of  data.  Therefore,  traditional  EEG  acquisition

equipment  choosing  a  wired  transmission  method  (usually
optical  fiber  transmission)  enhances  the  reliability,  stability,
and  transmission  rate  of  data  transmission,  and  also  indi-
rectly  loses  portability[7].  Nowadays,  the  application  research
on  EEG  has  become  more  diverse.  EEG  acquisition  not  only
needs  to  meet  the  performance  requirements  of  big  data,
high  reliability,  and  high  speed,  but  also  needs  to  meet  the
acquisition  requirements  of  mobility,  continuous  monitoring,
and  comfortable  wearing  in  daily  life.  Therefore,  research  on
high-performance  portable  wireless  EEG  acquisition  technol-
ogy has great application value and practical significance[8].

The following summarizes the research status and develop-
ment trend of the hardware system of EEG acquisition equip-
ment, summarizes the basic structure of EEG acquisition equip-
ment,  and  focuses  on  sorting  out  and  discussing  different
methods for optimizing EEG acquisition equipment.

EEG  acquisition  equipment  is  a  data  source  for  various
EEG applications and research. As a precision test instrument,
it  is  necessary  to  ensure  the  safety  of  the  user,  as  well  as  the
high  precision  and  high  common  mode  rejection  ratio
(CMRR)  of  the  system,  and  at  the  same  time  reduce  the
power consumption, volume and cost of the system as much
as  possible.  EEG signals  have low frequency and small  ampli-
tude,  and  are  easily  affected  by  various  noises  and  interfer-
ences.  Therefore,  when  designing  the  analog  front-end  cir-
cuit,  the  following  conditions  need  to  be  met  in  order  to
accurately extract the signal:

(1) Variable gain design. A first-stage variable gain ampli-
fier  circuit  is  designed  to  avoid  saturation  of  the  output  sig-
nal due to changes in EEG signals.

(2) High CMRR and input impedance. The 50 Hz power fre-
quency  interference  in  AC  will  be  introduced,  which  is  a
common mode interference for  the  analog front-end system.
Therefore, the circuit should improve the common-mode rejec-
tion  ratio  to  suppress  common-mode  interference.  In  the
skin-electrode  interface,  there  is  an  interface  impedance,
which  usually  reaches  the  megohm  level.  Therefore,  the
input  impedance  of  the  analog  front-end  system  must  be
high enough, otherwise the signal  reaching the analog front-
end will be seriously attenuated.

(3) Low-input referred noise. Noise performance is one of
the most important indicators to be considered in the design
of  an  EEG  signal  recording  system.  The  input  referred  noise
determines  the  minimum  amplitude  of  the  EEG  signal  that
the  system  can  record.  In  the  design  of  amplifier  circuits,  the
signal-to-noise ratio is usually used to determine the noise per-
formance  that  the  circuit  needs  to  achieve.  The  SNR  of  the
front-end  circuit  of  the  EEG  signal  recording  system  is
required to be greater than 40 dB. For the signal recording sys-
tem,  the  typical  value  of  the  intracranial  EEG  signal  is
500 µVrms, so the equivalent input noise of the analog front-
end circuit must be less than 5 µVrms.

(4)  Low  power  consumption.  In  recent  years,  wearable
medical  devices  have  gradually  become  a  development
trend.  Such  devices  require  long-term,  real-time  monitoring
and the detection of patients. Therefore, low power consump-
tion  design  is  required  to  prolong  battery  life.  Excessive
power  consumption  of  the  EEG  recording  circuit  system  will
seriously  heat  up  the  implanted  device,  thereby  increasing
the temperature of the contacted brain tissue, thereby affect-
ing  normal  data  recording,  and  even  causing  damage  to  the
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brain  tissue,  which  is  not  allowed.  Low  power  consumption
design is one of the technical bottlenecks restricting the imple-
mentation  of  implantable  systems.  Especially  in  the  case  of  a
large  number  of  recording  channels,  the  power  consump-
tion  requirements  for  the  single-channel  front-end  amplifier
are very high, usually in the order of µW.

Traditional  EEG  acquisition  equipment  usually  includes
the  following  main  components:  an  electrode  lead  interface,
preprocessing  circuit,  analog-to-digital  conversion  circuit
(ADC),  processor  circuit,  storage  module,  communication  cir-
cuit  and  power  supply  module.  Some  equipment  will  add
some  expansion  modules  for  specific  research,  such  as  sen-
sors  for  collecting  other  information[9−18].  The  block  diagram
of a typical EEG acquisition system is shown in Fig. 2. 

3.1.  Electrode

The  recording  electrode  is  a  sensor  that  converts  the
brain  electrical  activity  signal  of  the  human  body  into  a  volt-
age  (current)  signal  that  can  be  processed  by  the  circuit.  It  is
a  bridge  connecting  the  electrical  activity  of  brain  neurons
and  the  circuit  system.  Electrodes  are  mainly  divided  into
non-invasive  electrodes  and  invasive  electrodes.  Non-inva-
sive  electrodes  are  generally  used  to  obtain  EEG  signals  on
the surface  of  the  scalp,  mainly  including wet  electrodes,  dry
electrodes and non-contact electrodes: Wet electrodes are gen-
erally  composed  of  conductive  gel,  Ag/AgCl[19].  Wet  elec-
trodes  have  the  following  advantages:  allowing  high-density
EEG  recordings,  higher  signal  quality  and  less  susceptible  to
power  interference  and  motion  artifacts  than  dry  electrodes.
However,  the  wet  electrode  itself  also  has  some  disadvan-
tages:  (1)  when  collecting  physiological  electrical  signals,  in
order  to  establish  a  good  path  between  the  electrode  and
the  subcutaneous  tissue,  the  skin  must  be  pre-treated  to
remove  the  cuticle;  (2)  since  the  conductive  gel  on  the  elec-
trode  will  slowly  volatilize  and  dry  over  time,  the  conductiv-
ity  of  the  dried  gel  will  be  greatly  reduced,  so  the  wet  elec-
trode is not suitable for long-term signal acquisition. Dry elec-
trodes  generally  have  a  comb-like  structure  and  consist  of
micro-pillars  that  directly  contact  the  scalp  or  slightly  pene-
trate  the  epidermis  of  the  skin[20−22].  Dry  electrodes  are  diffi-
cult  to  fix  on  the  scalp,  and  have  stronger  signal  instability
and  higher  impedance.  The  dry  electrode  is  different  from
the wet electrode. It does not contain the electrolyte itself, so
it is much more convenient and comfortable than the wet elec-
trode.  Therefore,  dry  electrodes  are  widely  used  in  wearable
medical  devices.  Non-contact  electrodes  are  capacitive  elec-
trodes  that  measure  EEG  signals  spaced  from  the  skin.  The
use  of  such  electrodes  greatly  reduces  the  preparation  pro-

cess  for  measuring EEG signals,  but  provides signals  with too
small  amplitudes  and  is  susceptible  to  motion  artifacts[23, 24].
The  conductivity  and  contact  impedance  values  of  elec-
trodes vary depending on the electrode material, scalp condi-
tion, electrode position and other factors. Generally speaking,
the  contact  impedance  of  the  wet  electrode  is  between
5–50  kΩ,  the  dry  electrode  is  1  kΩ–1  MΩ  and  the  conductiv-
ity is  both between 0.5–5 mS. It  is  important to note that the
contact  resistance  of  electrodes  will  increase  over  time  and
therefore require periodic inspection and replacement.

Invasive  electrodes,  also  known  as  implantable  elec-
trodes,  generally  refer  to  that  which  is  surgically  implanted
on  the  surface  of  the  dura  mater  or  cortex,  or  which  pene-
trates the brain to measure and record EEG signals from indi-
vidual  cells  or  cell  groups.  Invasive  electrodes  fall  into  two
broad  categories:  penetrating  and  non-penetrating  cortical
electrodes. Needle-penetrating cortical electrodes are defined
as individual microfilaments,  microfilament bundles,  or arrays
that  are  used  for  precise  positioning  by  the  recording  site  in
the  brain,  which  is  used  to  measure  action  potentials  or
LFP[25−27],  and  non-penetrating  electrodes  that  are  generally
used, for example extracranial EEG, epidural electrocorticogra-
phy  (ECoG)  or  cortical  ECoG  recordings[28].  Invasive  elec-
trodes capture more accurate signals  but are prone to bodily
reactions  that  cause  signal  degradation  or  loss.  Generally
speaking,  the  contact  impedance  of  intrusive  electrodes  is
between several hundred Ω and several MΩ, and the conduc-
tivity is between 0.1−10 mS. 

3.2.  Preprocessing circuit

After  the  signal  is  fed  through  the  electrode  interface,  it
is transmitted to the analog channel.  The amplitude of EEG is
only  at  the μV  level.  During  the  signal  acquisition  process,  it
is  extremely  susceptible  to  various  interferences  from  the
human body itself  and the external  environment.  The analog
front-end  circuit  needs  to  remove  these  interferences  as
much  as  possible  while  amplifying  the  signal,  otherwise  the
quality of the collected signal will be affected. Common inter-
ference  factors  include  electrode  direct  current  (DC)  imbal-
ance[29],  50/60  Hz  power  line  interference[30−37],  motion  arti-
facts[38] and circuit  noise[39],  etc.  In  order  to remove the influ-
ence  of  interference  and  facilitate  collection,  high  gain,  high
common-mode rejection ratio,  high-impedance AFE and a fil-
ter with good performance are required.

The  main  function  of  the  preprocessing  circuit  is  to
amplify and filter the original EEG signal. It is the key factor to
determine the final signal quality of the EEG acquisition equip-
ment,  so  it  is  the  crucial  research  field  of  the  EEG  acquisition

 

Fig. 2. (Color online) Block diagram of a typical EEG acquisition system.
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circuit  part.  The  preprocessing  circuit  is  mainly  composed  of
a  low-noise  instrumentation  amplifier  (IA),  a  programmable
gain  amplifier  (PGA)  and a  filter.  The  main  function is  to  pro-
vide appropriate gain to the EEG signal while filtering out inter-
ference and noise to ensure the quality of  the signal  input to
the  ADC.  Among  them,  the  IA  amplifies  the  EEG  signals  col-
lected by the electrodes,  and suppresses interference such as
electrode  offset  voltage  and  low-frequency  noise;  the  PGA
selects  the  corresponding  amplification  factor  according  to
the  amplitude  of  the  EEG  signals,  and  adjusts  the  swing  of
the output signal. The signal-to-noise ratio is optimized; the fil-
ter  filters  out  the  frequency  components  outside  the  signal
band to avoid noise aliasing in the ADC sampling process. 

3.2.1.    Instrumentation amplifier (IA)
The  IA  is  the  first-stage  amplification  circuit  of  the  AFE,

which provides high gain for the input signal and can attenu-
ate  the  noise  equivalent  to  the  input  terminal  of  the  subse-
quent  circuit.  Therefore,  in  the  overall  architecture  of  the
front-end  circuit,  usually  only  the  low-noise  design  of  the  IA
needs  to  be  considered.  However,  considering  the  existence
of  offset  and  common-mode  interference,  too  high  gain  will
easily  cause  the  output  of  the  amplifier  to  be  saturated.  The
gain of  the IA is  generally set at  40 dB.  At the same time,  the
IA  must  have  a  large  CMRR  to  suppress  50/60  Hz  power  line
interference.  Also,  the  IA  is  directly  connected  to  the  elec-
trode,  so  the  input  impedance  needs  to  be  large
enough[40−45].  Common  IA  includes  three-op-amp  structures,
AC capacitive coupling structures, and current feedback ampli-
fier  structures.  This  section  will  analyze  the  common  struc-
tures of low-noise IA and compare their advantages and disad-
vantages.

(1)  Three-op-amp  IA:  The  three-op-amp  structure  is  the
most common structure, usually composed of three op-amps,
as  shown  in Fig.  3(a).  The  front-end  gain  of  the  IA  is  deter-
mined  by RG,  and  for  the  convenience  of  user  configuration,
RG is generally realized outside the chip. The first-stage buffer
is  fully  differential.  If  A1 and  A2 are  perfectly  matched,  the
input  buffer  circuit  will  not  amplify  the  common-mode  sig-
nal.  The CMRR of the circuit  is  mainly determined by the sec-
ond-stage  operational  amplifier  and  resistor  matching,  so
amplifier  gain  can  be  adjusted  without  affecting  CMRR.  The
input impedance of the three-op-amp structure is high, the dis-
tortion is low, and the gain is configurable. However, affected
by the resistance matching accuracy,  the circuit  CMRR gener-
ally  does  not  exceed  80  dB.  In  order  to  improve  the  CMRR,
laser-cutting  resistance  matching  technology  is  required,

which  increases  the  cost.  In  addition,  the  circuit  is  driven  by
three op amps, and the feedback network requires the ampli-
fier  output  impedance  to  be  low  enough,  so  the  power  con-
sumption is high, and all three op amps contribute noise.

(2) AC capacitive coupling IA: As shown in Fig. 3(b) is a typ-
ical  IA  with  capacitive  coupling  and  capacitive  feedback.  The
input  capacitor Cin is  directly  connected  to  the  electrode,
which isolates the DC offset voltage of the electrode. In order
to ensure the circuit has an extremely low high-pass cut-off fre-
quency  and  provide  a  common-mode  bias  for  the  circuit,  a
diode-connected  MOS  pseudo-resistor Rp is  generally  added,
and its  parasitic  transistor  is  used to obtain a large resistance
of  TΩ  level.  However,  pseudo-resistors  are  easily  affected  by
factors such as process and temperature to produce large resis-
tance  fluctuations.  The  noise  of  this  structure  is  low  and  the
matching  accuracy  of  the  capacitor  is  high.  Meanwhile,  the
capacitive  feedback  network  does  not  require  additional  cur-
rent.  However,  this  structure also has  disadvantages;  in  order
to  achieve  high  gain,  the  input  capacitance  is  usually  large,
which increases the chip area,  and an additional circuit  struc-
ture  needs  to  be  added  to  suppress  noise,  sacrificing  power
consumption.

(3) Current feedback IA: The structure of the current feed-
back IA is shown in Fig. 3(c), and the error signal used as feed-
back  is  in  the  form  of  the  current.  The  resistor  network  and
the  transconductance  amplifiers  Gm1,  Gm3 together  deter-
mine the gain of the current feedback IA.  Since the transcon-
ductance  amplifier  under  the  standard  CMOS  process  is  eas-
ily  affected  by  temperature  and  process  angle,  generally  the
transconductance of Gm1 and Gm3 are equal, and the gain accu-
racy  is  improved  through  layout-matching  technology.  The
power consumption and noise of the current feedback IA are
relatively  low,  and  it  is  very  suitable  for  offset  compensation
design,  which  can  effectively  improve  the  CMRR  of  the  cir-
cuit. However, since the output voltage is directly fed back to
the  gate  of  the  Gm3 input  transistor,  it  is  difficult  to  achieve
rail-to-rail  output,  which  cannot  meet  the  accuracy  require-
ments of subsequent ADCs. 

3.2.2.    Programmable gain amplifier (PGA)
Changes  in  the  recording  site,  environment,  and  sam-

pling bioelectrodes will  cause a wide range of changes in the
amplitude  of  the  scalp  EEG  signal.  Therefore,  a  PGA  is
required  to  adjust  the  overall  gain  of  the  pre-circuit  to  avoid
saturation  of  the  output  signal.  Considering  factors  such  as
chip  area,  noise  performance,  and  circuit  power  consump-
tion  for  the  first-stage  amplifier,  the  gain  of  the  preamplifier

 

Fig. 3. (Color online) Three common IA structures.
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may not  meet  the amplification requirements  of  the EEG sig-
nal,  so  a  second-stage  amplifier  is  needed  to  re-amplify  the
pre-stage  signal.  The  second  stage  amplifier  needs  to  be
designed with adjustable gain. A PGA is usually designed as a
closed-loop  circuit  structure,  and  the  gain  of  the  amplifier  is
adjusted  through  a  logic  control  circuit.  Adopting  a  closed-
loop  structure,  the  gain  accuracy  of  the  amplifier  is  high,  the
linearity is relatively good, and the output range is also large.
Therefore, it is very suitable for the front-end circuit for extract-
ing  biomedical  signals  such  as  EEG.  There  are  currently  two
mainstream  PGAs:  variable  resistor  feedback  PGA  and  vari-
able  capacitor  feedback  PGA.  The  structure  of  the  resistive
feedback  PGA  is  shown  in Fig.  4(a).  Its  main  components  are
a  high-gain  open-loop  operational  amplifier,  input  resistor
and  feedback  resistor.  When  transmitting  signals  of  different
amplitudes, the voltage at the source terminal of the MOS tran-
sistor  will  change,  thereby  affecting  the  on-resistance  of  the
transistor. This will result in different gains for transmitting sig-
nals  with  different  amplitudes,  thereby  affecting  the  linearity
of  the  system,  and  in  severe  cases,  causing  signal  distortion.
In  addition,  PGAs  with  resistive  feedback  have  static  power
consumption  and  are  not  suitable  for  low-power  applica-
tions.  A  large  resistor  value  can  reduce  the  impact  of  static
power consumption and MOS on-resistance on system linear-
ity,  but  it  will  introduce  thermal  noise,  which  is  not  con-
ducive to low-noise design. The structure of the capacitor feed-
back  PGA  is  shown  in Fig.  4(b).  It  is  mainly  composed  of  an
open-loop amplifier, input and feedback capacitors, gain con-
trol  switches  and  MOS  pseudo-resistors.  Its  input  capaci-
tance and feedback capacitance will  not  introduce additional
noise,  so  the  noise  performance  of  the  circuit  is  better  than
that  of  resistance  feedback  PGA.  In  addition,  since  the  resis-
tance  value  of  the  MOS-Bipolar  pseudo-resistor  is  as  high  as
1012 Ω,  the static  power consumption is  negligible compared
with the resistor feedback type[46−48]. 

3.2.3.    Filter
Three  types  of  filters  are  commonly  used  in  EEG  acquisi-

tion equipment:  a  high-pass  filter,  power frequency notch fil-
ter and low-pass filter.

At  the  forefront  is  the  high-pass  filter,  whose  main  func-
tion  is  to  isolate  the  DC  component  of  the  brain  potential.  It
is  generally believed that the frequency components of  scalp
EEG  signals  related  to  cognitive  tasks  are  located  at
0.5−100  Hz.  The  starting  frequency  of  the  high-pass  filter  is
generally  set  at  about  0.5  Hz,  and  is  usually  realized  by  an

active  filter.  The  band-pass  amplitude  and  cut-off  frequency
of the active filter  will  not change due to different loads,  and
it can also dynamically compensate reactive power[49, 50].

The  main  function  of  the  power  frequency  notch  filter  is
to  filter  out  the  50  Hz  power  frequency  noise  mixed  in  the
EEG  signal.  In  the  traditional  notch  design,  the  notch  with  a
double-T  structure  is  the  most  commonly  used,  but  this  kind
of  notch  has  a  practical  defect,  that  is,  it  requires  high  preci-
sion  of  components.  In  order  to  achieve  the  ideal  effect,  the
accuracy of resistors and capacitors is required to reach 0.1%,
which is very difficult for the current capacitor-processing tech-
nology[51, 52].

The role of  the low-pass filter  is  to filter  out environmen-
tal  high-frequency  noise  interference,  mainly  environmental
radio waves,  power supply ripple,  and noise caused by active
devices  themselves[53, 54].  Common  low-pass  filters  used  for
the  analog  front-end  of  EEG  acquisition  include  the  RC  filter,
switched capacitor filter and Gm-C filter.

(1)  RC  filter:  Passive  RC  filters  are  generally  implemented
off-chip,  which  is  not  considered  in  this  article.  The  active
RC  filter  adds  a  high-gain  open-loop  operational  amplifier.
Fig.  5(a)  shows  a  simple  first-order  active  RC  filter  structure.
The  active  RC  filter  has  a  simple  structure  and  high  linearity,
but it needs to introduce large resistors and capacitors, which
will increase the chip area and lead to the deterioration of cir-
cuit  noise  performance,  and  at  the  same  time,  the  precision
of  integrated  resistors  and  capacitors  is  also  poor.  Moreover,
the  MOS  pseudo-resistor  is  not  suitable  for  realizing  a  low-
pass cut-off frequency of several hundred Hz due to its exces-
sively  large  resistance  value,  and  the  pseudo-resistor
depends  too  much  on  the  process  and  temperature,  which
will lead to inaccurate time constants.

(2)  Switched  capacitor  filter:  In  order  to  solve  the  area
problem  of  the  RC  filter,  the  switched  capacitor  filter  uses  a
set of switches and capacitors to be equivalent to a large resis-
tor,  and its resistance value is the ratio of the voltage change
value  on  the  capacitor  to  the  average  current  in  one  clock
cycle. Fig. 5(b) is a typical first-order, switched capacitor filter.
Switched  capacitor  filters  do  not  need  to  use  large  resistors
and  capacitors  to  achieve  extremely  low  cut-off  frequency,
reduce  the  layout  area,  and  facilitate  on-chip  integration.  At
the  same  time,  the  noise  of  the  circuit  is  reduced.  The  low-
pass  cut-off  frequency  of  the  structure  can  be  changed  by
the frequency of  the clock,  and the adjustment is  simple and
convenient. However, this structure also has certain disadvan-
tages;  in  order  to  avoid  aliasing,  the  clock  frequency  of  the

 

Fig. 4. (Color online) Two common PGA structures.
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sampling  switch  needs  to  satisfy  that  the  sampling  fre-
quency  is  at  least  twice  the  signal  frequency.  This  requires
the bandwidth of  the amplifier  to be at  least  twice the signal
bandwidth,  so  power  dissipation  increases  at  high  frequen-
cies.  In  addition,  the  circuit  contains  a  lot  of  sampling
switches,  requiring  two-phase  non-overlapping  clocks,  and
the  design  is  complicated.  At  the  same  time,  there  are  non-
ideal  factors  in  the  MOS  switch,  which  will  affect  the  accu-
racy of the sampled signal.

(3)  Gm-C  filter:  Unlike  active  RC  filters,  Gm-C  filter  cir-
cuits only contain capacitors and transconductance units and
do  not  require  the  use  of  resistors.  The  function  of  the
transconductance  unit  is  to  convert  the  input  voltage  into
the  current.  In  the  Gm-C  filter,  the  basic  unit  of  the  integra-
tor  is  composed  of  a  transconductance  unit  and  a  capacitor,
which are then cascaded to form a filter. Fig. 5(c) is a basic sec-
ond-order  Gm-C  filter  structure  diagram.  It  is  relatively  easy
for  the  Gm-C filter  to  achieve a  higher  cut-off  frequency.  The
cut-off  frequency can be changed by changing the transcon-
ductance  of  the  third  and  fourth  stages  and  the  capacitance
of the interstage capacitor, and the tuning is simple and conve-
nient.  However,  the  linearity  of  the  circuit  is  relatively  low,
and  it  is  more  sensitive  to  parasitic  capacitance.  Especially
the transconductance unit,  its transconductance value is rela-
tively  low,  and  the  deviation  is  very  large  at  the  process  cor-
ner.  In  addition,  if  the  transconductance  of  the  transconduc-
tance unit is at the μS level and the required cut-off rate is to
be achieved, the value of the interstage capacitance needs to
be as high as the nF level.  If  no off-chip capacitor is used, the
capacitor area will be extremely large. 

3.3.  Analog-to-digital conversion circuit (ADC)

The  analog-to-digital  conversion  circuit  in  the  acquisi-
tion  module  is  a  key  part  of  EEG  signal  acquisition.  EEG  sig-
nals  are  extremely  weak  and  are  easily  disturbed  by  noise.
Good  ADC  performance  can  prevent  EEG  signals  from  being
distorted  due  to  noise  coupling  and  improve  signal-to-noise
ratio,  ensuring  high-fidelity  transmission.  At  the  same  time,

the  effective  frequency  range  of  the  EEG  signal  on  the  sur-
face of the scalp is 0.1−100 Hz. According to the Nyquist sam-
pling  theorem,  the  ADC  sampling  frequency  is  at  least  twice
the  maximum  signal  frequency  to  ensure  that  no  aliasing
occurs within the signal  bandwidth.  In addition,  since the DC
interference  is  not  filtered  out  in  the  ADC  front-end  circuit,
the  signal  for  analog-to-digital  conversion  will  be  coupled
into  the  DC  component,  and  the  minimum  amplitude  of  the
EEG signal is greater than 10 μV. In order to prevent the intro-
duction of excessive quantization noise, the minimum resolu-
tion of the ADC should be below 1 μV. In order to ensure the
quality  of  the  acquired  signal,  the  ADC  generally  chooses  a
device with low noise and large input impedance[55−58]. 

3.4.  Processor module

According  to  different  functions  and  applications,  some
EEG  acquisition  devices  require  processors  to  run  signal-pro-
cessing algorithms.  The processor circuits  of  such devices are
usually  implemented  by  DSP,  FPGA  or  microcomputers  with
high  computing  power.  The  processor  sends  the  processed
data to the upper computer through the communication inter-
face,  or  directly  outputs  to  the  display  screen  for  display,  or
directly  controls  some controlled equipment.  However,  some
EEG devices only need the processor to execute control instruc-
tions, and send the collected EEG signal data to the host com-
puter  through  the  communication  circuit,  and  the  host  com-
puter  runs  the  EEG  signal  processing  algorithm.  In  order  to
facilitate the data management in the process, the EEG acquisi-
tion  equipment  usually  has  a  storage  module,  and  the  stor-
age space varies according to the application[59]. 

3.5.  Integrated chip

The  bulky  EEG  acquisition  equipment  in  the  past  was
mainly  used  for  scientific  research  and  medical  treatment,
and it was difficult to apply it in daily life. Since the 1990s, for-
eign  countries  have  begun  to  study  integrated  chips  for  EEG
acquisition[60]. In recent years, the rapid development of micro-
electronics technology has brought opportunities for the appli-

 

Fig. 5. (Color online) Three common filter structures.
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cation of portable EEG acquisition equipment and even body
area networks[9, 13, 15, 16, 61−70].

Qian et  al.  proposed  a  micropower  low-noise  neural
front-end  circuit  capable  of  recording  epileptic  fast  ripples
(FR).  The  front-end  circuit  consists  of  a  preamplifier  and  a
6th-order  bandpass  filter,  which  is  designed  for  signal  sens-
ing  in  deep  brain  stimulators  for  epilepsy  in  the  future.  To
improve  the  noise  and  power  trade-off  in  the  preamplifier,  a
current-splitting technique combining with an output-branch
current scaling technique in a folded-cascode amplifier  struc-
ture is proposed. Experimental results show that the preampli-
fier  owns  39.4  dB  DC  gain,  0.36  to  1.3  kHz  of −3  dB  band-
width,  and  3.07 μVrms  total  input-referred  noise  and  con-
sume 2.4 μW under a 2.8 V power supply[61].

Robinet et  al.  proposed a 32-channel recording ASIC that
can  realize  low-noise  amplification  and  analog  filtering  func-
tions.  Meanwhile,  it  can  also  own  a  12-bit  ADC  function  and
offer programmable output rates by using a serial peripheralin-
terface  (SPI).  The  entire  system  is  designed  for  use  in  a
remotely  powered  wireless  implantable  ECoG  recording  sys-
tem.  The  measured  input-referred  noise  of  each  recording
channel  is  0.7 μVrms  on  a  0.5−300  Hz  bandwidth.  The  ASIC
was  implemented  in  a  0.35-μm  CMOS  process  and  the  total
die area is  86 mm2,  the analog power consumption is  limited
to 134 μW for per channel[62].

Zhou et  al. proposed a  mixed-signal  AFE ASIC for  an EEG
acquisition  system.  It  will  be  attached  to  the  scalp  via  elec-
trodes  and  will  be  used  to  detect  electrical  signals  from  the
brain, amplify the collected signals and convert them into digi-
tal  data.  The  EEG  signals  of  each  channel  are  amplified  by  a
pre-amplifier,  whose  gain  is  from  10  to  1000.  After  the  pre-
amplifier,  a  two-stage low pass  filter  is  used with an optional
bandwidth  of  80  or  800  Hz.  The  input  referred  noise  of  the
whole  system  is  2.2 μVrms  for  a  signal  bandwidth  of
1−1 kHz. The ADC has a resolution of 12 bits based on the suc-
cessive  approximation  algorithm.  The  power  consumption  of
the  analog  part  for  the  ASIC  is  3.5  mW  under  a  1.8  V
supply[63]. Fig.  6 shows the block diagram of  the EEG acquisi-
tion AFE.

Yoo et  al. proposed  a  scalable  8-channel  EEG  acquisition
SoC for the continuous detection and recording of patient-spe-
cific  seizure activity from scalp EEG.  The chip integrates an 8-
channel AFE, an 8-channel feature extraction processor, a clas-
sification processor and 64 kB of  memory.  The AFE module is
powered by 1.8 V and consumes a total of 66 μW in the 8-chan-
nel  operation mode.  The bandwidth of  30/100 Hz  is  scalable,
and the input reference noise is only 0.91 μVrms in the band-

width  of  0.5−100  Hz.  The  GBW  controller  is  used  to  provide
real-time  gain  and  bandwidth  feedback  to  the  AFE  to  main-
tain accuracy[64].

Xu et al. proposed an 8-channel gel-free EEG/electrode-tis-
sue  impedance  (ETI)  acquisition  system,  which  consisted  of
nine active electrodes (AEs) and one back-end (BE) analog sig-
nal processor. The AEs are applied to amplify the weak EEG sig-
nals,  and  their  low  output  impedance  can  suppress  artifacts
and  50/60  Hz  power  frequency  interference.  The  common-
mode  feed-forward  (CMFF)  scheme  improves  the  CMRR  of
the  AE  pairs  by  25  dB.  The  BE  is  applied  to  post-processes
and digitize the analog outputs of the AEs, which can also con-
figure  them  by  a  single-wire  pulse  width  modulation  (PWM)
protocol. The input impedance of each EEG channel is 1.2 GΩ
at  20  Hz,  and  1.75 µVrms  (0.5−100  Hz)  input-referred  noise,
84  dB  CMRR  and  ±250  mV  electrode  offset  rejection  capabil-
ity.  The  EEG  acquisition  system  was  fabricated  in  a  standard
0.18 µm  CMOS  process,  and  the  power  is  less  than  700 µW
under a 1.8 V supply[9].

Muller et  al. proposed  a  minimally  invasive  64-channel
ECoG  signal  acquisition  system.  The  device  consists  of  a
highly flexible,  high-density 64-channel  electrode array and a
flexible antenna with a total chip power consumption of only
225 μW,  enabling  long-term  stable  neural  recordings.  The
input  reference noise  of  the  AFE module  can reach as  low as
1.23 μVrms  at  a  chopping  frequency  of  16  kHz,  but  the  sys-
tem  has  not  been  tested  in  a  hospital  environment  and  is
slightly  deficient  compared  to  the  ECoG  signals  acquired
under conventional conditions[65].

Smith et al. proposed a technique for AFE design specific
to EEG. This paper improves noise performance of a similar sys-
tem  and  proposes  an  equalization  technique,  which  can
reduce  the  ADC  dynamic  range  requirements  and  does  not
require a variable gain amplifier (VGA). The prototype is fabri-
cated  in  1p9m  65  nm  CMOS,  which  can  take  advantage  of
the  presented  findings  to  realize  high-fidelity,  full-spectrum
ECoG  recording.  The  power  consumption  of  the  entire  ana-
log  front  end  is  1.08 μW  over  a  150  Hz  bandwidth  and  only
7 bits of ADC resolution[66].

Tohidi et  al.  proposed  a  low-power  instrumentational
amplifier (IA), which is designed for EEG signal acquisition tar-
geting  seizure  detection.  The  power  of  the  proposed  struc-
ture  per  channel  is  0.92 µW under  a  0.8  V  supply.  Due to  the
use  of  buffer  structure  and  impedance-enhanced  loop,  the
input  impedance  reaches  160  and  16  GΩ  at  1  and  10  Hz,
respectively.  Also,  the  chopping techniques  lead to  an input-

 

Fig. 6. (Color online) Block diagram of the EEG acquisition AFE[63].

8 Journal of Semiconductors    doi: 10.1088/1674-4926/44/12/121401

 

 
Q R Ren et al.: A review of automatic detection of epilepsy based on EEG signals

 



referred  noise  of  1.7 µVrms  over  the  bandwidth  of
0.5−100  Hz  with  a  noise  efficiency  factor  (NEF)  of  3.87  and  a
CMRR  of  137  dB[16]. Fig.  7 shows  the  proposed  instrumenta-
tional amplifier structure.

Karimi-Bidhendi et  al.  proposed two ultra-low-power EEG
signal  acquisition  analog  front-end  systems  working  in  the
weak  inversion  area.  The  power  supply  voltage  of  the  two
AFEs is only 0.4/0.6 V, and a capacitively coupled P−N comple-
mentary  OTA  is  used  to  achieve  power  consumption  of
0.216/0.69 μW  and  equivalent  input  noise  of  2.19/
2.3 μVrms respectively. Human tests have shown that the sys-
tem can reliably record EEG and ECoG neural  signals  and can
be  used  as  the  basis  for  a  small  implantable  ultra-low-power
EEG signal acquisition unit,  but it still  needs to further reduce
the sensitivity of the front-end to environmental noise[13].

Wu et  al. proposed  a  16-channel  AFE  EEG  signal  acquisi-
tion  device  for  a  closed-loop  seizure  control  system.  It  is
consisted  of  16  input  protection  circuits,  16  auto-reset  chop-
per-stabilized  capacitive-coupled  instrumentation  amplifiers
(AR-CSCCIA) with band-pass filters, 16 programmable transcon-
ductance  gain  amplifiers,  a  multiplexer,  a  transimpedance
amplifier,  and  a  SAR  ADC.  The  proposed  AFE  amplifier  has
49.1/59.4/67.9-dB  programmable  gain  and  2.02-µVrms  input-
referred noise in a bandwidth of 0.59−117 Hz. The power con-
sumption  of  the  proposed  AFE  amplifier  is  3.26 µW  of  per

channel,  and  the  NEF  is  3.36.  The  system  has  been  success-
fully  performed in  vivo animal  tests  and verifies  its  functions.
Experimental results show that the proposed AFE circuit is suit-
able  for  closed-loop  seizure  control  devices[15]. Fig.  8 shows
the system architecture of  the proposed ECoG-signal  acquisi-
tion system.

Tohidi et  al. proposed  a  low-power-consumption,  high-
input  impedance AFE circuit  design scheme for  a  continuous
working  EEG  acquisition  system.  In  addition  to  low-voltage
low-power  techniques,  the  design  uses  active  electrodes  to
increase  input  impedance  and  a  right-leg  drive  circuit  to
improve the common-mode rejection ratio (CMRR). After mea-
surement,  the  input  impedance  is  102  GΩ@1  Hz  and  5.2
GΩ@20  Hz,  the  equivalent  input  noise  in  the  0.5  Hz  1.2  kHz
integration  band  is  1.5 μVrms,  and  the  CMRR  is  greater  than
108 dB[67].

Tang et  al. proposed  a  multi-channel  AFE  ASIC  for  wear-
able  EEG  recording  systems.  Chopping  stabilization  (CS)  and
time-division-multiplexing  (TDM)  are  combined  uniformly  to
optimize  the input-referred noise  and the system-level  CMRR
targeting multi-channel AFE. Using this TDM/CS structure, mul-
tiple  channels  can  share  the  same  secondary  amplifier,  help-
ing  to  reduce  chip  size  and  power  consumption.  The  system
includes  dual  feedback  loops  for  input  impedance  boosting
and electrode offset  cancellation.  The power  consumption of

 

Fig. 7. (Color online) Proposed instrumentational amplifier structure[16].

 

Fig. 8. (Color online) System architecture of the proposed ECoG-signal acquisition system[15].
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the  AFE  is  24 µW  at  a  1  V  supply  voltage.  The  input  referred
noise is 0.63 µVrms in 0.5−100 Hz and the input impedance is
boosted  to  560  MΩ  at  50  Hz.  The  CMRR  of  the  amplifier  and
system-level AFE are 89 and 82 dB, respectively[68].

Gao et  al. proposed  a  two-stage  time-division  multiplex-
ing  analog  front-end  (TDMAFE)  for  multi-channel  EEG  signal
acquisition.  They  proposed  a  four-channel  synchronous  TDM
technology  eliminating  the  mismatch  among  the  four-chan-
nel  signals.  To  increase  input  impedance,  an  impedance-
boosted  chopper  based  on  the  differential  difference  ampli-
fier  is  proposed.  And  to  eliminate  DC  offset,  an  improved
low-noise  digitally  controlled  DC  servo  loop  (DCDSL)  is  pro-
posed.  The entire AFE system is  1.2 mm2 and the power con-
sumption  is  30.6 μW  under  a  1.2-V  supply.  Post-simulation
results  show  that  the  gain  in  the  AFE  ranges  from  34  to
60 dB.  The range of  the  input  offset  cancellation is  ±300 mV.
The  equivalent  input  impedance  is  boosted  to  1.6  GΩ.  The
equivalent  integrated  noise  is  1.66 μVrms  at  the  range  of
0.1−100 Hz[69].

Huang et  al. proposed  an  AFE  amplifier  (AFEA),  which
can be applied for EEG recording. A capacitively coupled chop-
per  instrumentation  amplifier  (CCCIA)  with  chopper  modula-
tion  is  used  in  the  proposed  AFEA  to  suppress  flicker  noise
within  the  bandwidth and achieve  lower  noise.  In  this  paper,
the EEG AFEA has the tunable gains of 60.4/69.6/79.2 dB. The
input referred noise within the bandwidth is 0.839 μVrms, the
area  is  2.576  mm2 and  power  consumption  is  83.2 μW[70].
Table 1 shows the EEG signal AFE performance summary. 

4.  Epilepsy signal classification technology

With  the  advancement  of  artificial  intelligence  technol-
ogy in recent years, researchers continue to dig in the field of
automatic  diagnosis  of  epilepsy  based  on  EEG,  and  have
obtained many detection methods to solve the problem. This
algorithm  is  of  great  help  to  the  automatic  detection  of
epilepsy,  because  it  can  independently  learn  the  classifica-
tion  rules  of  the  data  and  improve  the  performance  of  data
expansion.  The  core  issues  of  epilepsy  detection  technology
are  feature  selection  and  classifier  design.  Feature  selection
aims  to  select  useful  features  depicting  epileptic  signals;  the

classification  stage  classifies  the  signals  according  to  the
selected  features,  showing  different  classification  results  of
epileptic  states.  The  following  is  an  introduction  to  the
research  progress  of  epilepsy  signal  classification  technology
from  four  aspects:  several  public  datasets  currently  used  in
epilepsy  detection,  feature  extraction  and  the  selection  of
epilepsy  EEG  signals,  an  epilepsy  detection  algorithm  based
on classical machine learning and an epilepsy detection algo-
rithm based on deep learning. 

4.1.  Publicly available epilepsy detection datasets

It  is  necessary  for  a  lot  of  scientists  and  researchers  to
use  a  suitable  dataset  for  assessing  the  performance  of  their
proposed methods. Therefore, we need to collect a large num-
ber of  EEG signals  for  the detection and prediction of  epilep-
tic  seizures.  Among  the  commonly  used  methods  for  detect-
ing  brain  activity,  EEG  recording  is  the  most  popular.  These
records  play  a  key  role  in  exploring  the  development  of
machine  learning  classifiers,  which  can  help  to  find  effective
methods  for  epilepsy  seizure  detection  in  different  aspects.
The  existence  of  publicly  available  datasets  is  important
because they provide a reference base to analyze experimen-
tal  results  and  allow  researchers  to  compare  experimental
results  with  others.  In  this  section,  we introduce several  pub-
licly available datasets that are popular in this research field. 

4.1.1.    Children Hospital Boston, Massachusetts Institute

of Technology—EEG dataset
This  dataset  was  collected  in  Boston  Children’s  Hospital,

which  included  EEG  recordings  of  pediatric  patients  with
intractable seizures. Physicians monitored the participants for
several  days  after  antiepileptic  drugs  were  stopped,  to
describe  their  seizures  state  and  evaluate  their  suitability  for
surgical intervention.

The  entire  dataset  includes  23  cases  from  22  subjects
(5  males,  3  to  22  years;  17  females,  1.5  to  19  years)  (the
chb21  and  the  chb01  were  collected  from  the  same  female
subject  with  the  interval  of  1.5  years)[71].  Every  case  (chb01,
chb02,  chb03,  chb04,  etc.)  included  about  9−42  continuous
files  of  a  subject.  Due  to  the  limitations  of  hardware  condi-
tions,  there  are  gaps  existing  between  consecutive  files.  Dur-

 

Table 1.   EEG signal AFE performance summary.

Reference Technology
(nm)

Output
accuracy
(bit)

Type Power
consumption
(μW)

Input
impedance
(GΩ)

Input referred
noise
(μVrms)

CMRR
(dB)

[61] 2011 60 − Analog 4.5 − 2.48 >79
[62] 2011 35 12 Mixed 134 − 0.5 51
[63] 2012 180 12 Mixed 350 − 2.2 −
[64] 2013 180 10 Mixed 66 >0.5 0.91 −
[9] 2014 180 12 Mixed 82 1.2 1.75 84
[65] 2015 65 15 Mixed 225 0.28 0.58 88
[66] 2016 65 7 Mixed 1.08 − − 82
[16] 2016 180 − Analog 0.92/ch 163@1 Hz

16.3@10 Hz
1.7 137

[13] 2017 180 − Analog 0.86/2.76 − 2.3 74
[15] 2018 180 10 Mixed 3.26/52.3/ch − 2.02 67.1
[67] 2019 180 6/8/10 Mixed 0.5 102@1 Hz

5.2@20 Hz
1.5 108

[68] 2020 180 − Mixed 1.5/ch 0.56 0.63 89
[69] 2021 180 − Analog 3.93/ch 1.6 1.66 135.89
[70] 2022 180 − Analog 83.2 0.154−0.273 0.839 85.3−97.5

10 Journal of Semiconductors    doi: 10.1088/1674-4926/44/12/121401

 

 
Q R Ren et al.: A review of automatic detection of epilepsy based on EEG signals

 



ing  this  gap,  no  EEG signals  were  recorded;  usually,  the  gaps
were  10  seconds  or  less,  but  sometimes  longer  gaps  existed.
All  signals  of  this  dataset  were  sampled at  256  Hz  and 16-bit
resolution by  using 23−26 electrodes.  During data  collection,
there  were  not  any  enhancement  steps  implemented.  Most
files  include  23  EEG  recordings,  some  include  24  or  26.  The
international  10−20  EEG  electrode  location  and  nomencla-
ture  system  were  used  during  recording.  In  some  files,  there
were  some  other  signals  recorded,  for  example,  ECG  signals
and vagus nerve stimulation (VNS) signals. 

4.1.2.    Long-term SWEC-ETHZ—EEG dataset
This  dataset  includes  18  patients  of  the  Inselspital  Bern,

P1–P18.  They  were  from  the  epilepsy  surgery  program[72].
The number of seizures for each patient ranged from 2 to 23.
The total  duration recorded between seizures  varied from 41
to  293  h.  Among  the  18  patients,  the  number  of  fast  and
short  seizures  for  P8  and  P14  were  very  high,  up  to  70  and
60,  respectively.  Therefore,  only  4  and  2  seizures  need  to  be
considered  as  their  main  seizures.  This  dataset  has  a  total
recording time of  2656 h,  of  which 116 seizures were labeled
by an experienced board-certified epileptologist (K.S.). 

4.1.3.    Bern-Barcelona—EEG dataset
This  dataset  contains  intracranial  EEG  recordings  of  five

epileptic patients, divided into two categories. In the first cate-
gory,  EEG  signals  were  collected  in  the  epileptic  area,  which
is called focal (F). In the second category, EEG signals were col-
lected in  the  non-epileptic  area  which  is  called  non-focal  (N).
Each category includes the 3750 pairs  of  recordings.  The two
signals of F class were collected from the epileptic signal origi-
nating  channel  and  another  adjacent  channel.  The  signals  of
the  N  class  were  collected  from  two  adjacent  channels
located  in  non-epileptic  regions.  All  EEG  recordings  were  fil-
tered by using a 4th-order Butterworth filter, and the filter fre-
quency  band  is  from  0.5  to  150  Hz.  All  signals  of  the  original
dataset  were  recorded  lasting  20  s,  where  the  sampling  fre-
quency  is  1024  Hz.  Then,  all  signals  were  down-sampled  to
512  Hz.  At  last,  the  median  was  subtracted  across  all  chan-
nels.  The  original  dataset  did  not  include  recordings  of  the
epileptic  seizures  and  recordings  of  3  h  after  the  last
seizure[73]. 

4.1.4.    Bonn University—EEG dataset
This  dataset  includes  500  recordings  of  500  different

patients,  where  each  record  lasts  23  s[74].  These  signals  were
collected  by  using  surface  electrodes,  and  the  sampling  fre-
quency  is  173.61  Hz.  In  this  dataset,  each  record  lasts  23  s
long and is split into 23 non-overlapping segments. Each seg-
ment  contains  1  second  of  data,  which  is  173  samples,  and
other  segmentation  strategies  cannot  be  considered.  This
method  of  splitting  is  the  limitation  of  the  dataset,  and  the
benefit  is  that  it  allows  fair  comparison  with  previous
research  results.  The  whole  dataset  contains  11  500  record-
ings  of  1  s.  The  entire  dataset  contains  five  categories  of
recordings,  and  each  category  contains  the  number  of  sig-
nals  in  the  phase.  The  first  class  of  recordings  were  collected
from  healthy  subjects,  and  they  were  with  their  eyes  open,
called  Z.  The  second  class  were  also  collected  from  healthy
subjects,  but  with  their  eyes  closed,  called  O.  The  third  class
is  the  ictal  group,  which  were  collected  from  epileptic  sub-
jects  during  a  seizure,  called  S.  The  fourth  class  includes  the
interictal  state  from  the  hippocampal  location  of  the  brain,

called  N.  And  the  last  class  includes  the  interictal  state  from
the epileptogenic zone of the brain, called F. 

4.1.5.    The Freiburg—EEG dataset
This  dataset  includes  21  patients’ invasive  EEG  record-

ings,  which  with  medically  intractable  focal  epilepsy.  These
data  were  collected  in  the  Epilepsy  Center  of  the  University
Hospital  of  Freiburg,  Germany[75].  In  this  dataset,  11  patients
had epilepsy foci in the neocortical brain structure, 8 in the hip-
pocampus, and 2 in both. Intracranial grid-,  strip-,  and depth-
electrodes  were  used  to  get  a  high  SNR,  fewer  artifacts,  and
record  directly  in  focal  regions.  The  EEG  signals  of  this
dataset  were  collected  by  using  a  Neurofile  NT  digital  video
EEG system, which owned 128 channels, 256 Hz sampling fre-
quency,  and  a  16-bit  ADC.  There  were  not  notch  or  band
pass filters being used. 

4.2.  Feature extraction and selection

It  is  an important step to realize the automatic  detection
of epilepsy by analyzing the signal and extracting effective fea-
tures as the classification basis. Reasonable and typical epilep-
tic  EEG  features  can  fully  characterize  the  EEG  signal  pattern,
and  effectively  describe  the  difference  between  EEG  signals
in various states such as seizures and normal states, highlight-
ing  the  difference  between  spikes  and  background  signals,
thereby  helping  the  classification  model  to  identify  epileptic
seizures  effective  screening.  The  quality  of  features  seriously
affects the final classification performance.

In  general,  the  features  used  for  epilepsy  detection  can
be divided into the following four categories: time-domain fea-
tures,  time-frequency  domain  features,  and  nonlinear  fea-
tures.

Time-domain features  are  the  most  basic  features  in  EEG
signal  processing.  Groups of  statistical  parameters  have been
frequently used to discriminate between ictal and normal pat-
terns,  because  it  is  assumed  that  EEG  statistical  distributions
during  a  seizure  and  normal  periods  are  different.  These
parameters are mean, variance, mode, median, skewness, and
kurtosis.  The minimum and maximum values are also used to
quantify the range of data or the magnitude of the signal base-
line.  Other  statistical  parameters  include  coefficient  of  varia-
tion  (CV)  defined  as  the  ratio  of  the  standard  deviation  (SD)
to  the  sample  mean  that  explains  the  dispersion  of  the  data
in  relation  to  the  population  mean.  Energy,  average  power,
and  root  mean  squared  value  (RMS)  are  mutually  relevant  to
amplitude  measurements.  The  energy  is  a  summation  of  a
squared signal,  the average power is  the signal  mean square,
and  the  RMS  is  the  square  root  of  the  average  power[76−86].
Time-domain  features  are  mainly  extracted  through  direct
observation  and  calculation  of  the  original  signal.  Its  advan-
tage is  that  the calculation is  simple and easy for  researchers
to understand intuitively. However, due to the non-stationarity
of the EEG signal itself, individual differences and external dis-
turbances  are  likely  to  affect  the  time-domain  characteristics.

Frequency  domain  analysis  is  based  on  the  assumption
that  EEG  signals  have  stationary  characteristics.  The  EEG  sig-
nal contains a variety of frequency components. By transform-
ing  the  EEG  signal  from  the  time  domain  to  the  frequency
domain,  the  information  of  different  frequencies  is  analyzed
and  features  are  extracted.  For  epileptic  EEG  signals,  com-
pared  with  the  interictal  period,  the  ictal  EEG  will  have  obvi-
ous characteristic waves such as sharp waves and spikes,  and
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the  signal  frequency  will  change  significantly.  The  frequency
domain  features  of  EEG  signals  include  power  spectral  den-
sity, high-order spectrum, differential entropy, etc.[87−98]. How-
ever, due to the inherent non-stationarity and randomness of
EEG  signals,  frequency  domain  analysis  is  limited  in  practical
applications.  Various  parameter  estimation  methods  can  be
used  in  the  spectral  feature  extraction,  and  the  accuracy  of

the  parameters  also  affects  the  quality  of  the  frequency
domain features.

If  the  amount  of  information contained in  the features  is
considered, neither the pure time-domain features nor the fre-
quency-domain features  can completely  describe an EEG sig-
nal, and the EEG analysis based on the assumption of stationar-
ity is not rigorous. Therefore, the researchers turned their atten-

 

Table 2.   Summary of features used in automatic seizure detection.

Reference Feature extraction Dataset Signal transform

[76] 2017 GModPCA Bonn Time-domain
[77] 2018 SubXPCA Bonn
[78] 2017 Z-score normalization Bonn
[79] 2018 Slope sign changes, statistical features Bonn
[80] 2018 Statistical, entropy features Bonn
[81] 2020 Statistical features Bonn
[82] 2021 Energy of signal Bonn
[83] 2021 Gray recurrence plot Intrinsic time-scale Bonn
[84] 2020 Local mean decomposition CHB-MIT
[85] 2020 R-square value, RMS CHB-MIT
[86] 2018 Statistical features Bern-Barcelona
[87] 2017 PSD, autoregressive model Bonn Frequency-domain
[88] 2021 FFT Bonn
[89] 2019 DFT, Rényi entropy Bonn
[90] 2020 Taylor-Fourier filter bank with O-splines Bonn
[91] 2021 Ramanujan periodic subspace (RPS), energy of the projection Bonn
[92] 2021 DFT Bonn
[93] 2021 FFT, bubble entropy Bonn
[94] 2020 FFT Bonn
[95] 2019 FFT, band power CHB-MIT
[96] 2017 FFT, band power CHB-MIT
[97] 2020 DFT, band energies CHB-MIT
[98] 2020 Phase-locking value Freiburg
[99] 2017 DWT Bonn Time-frequency
[100] 2017 WPD, energy, entropy, kurtosis Bonn
[101] 2018 EMD, entropy Bonn
[102] 2019 DWT, entropy features CHB-MIT
[103] 2019 EMD Bonn
[104] 2019 DWT, fuzzy entropy Bonn
[105] 2019 DWT, entropy features Bonn
[106] 2021 DWT Bonn
[107] 2022 EWT Bonn
[108] 2021 DWT, fractional S-transform, entropy Bonn
[109] 2020 Optimal equilateral wavelet filter bank, fuzzy, Rényi and Kraskov

entropy
Bonn

[110] 2021 STFT CHB-MIT
[111] 2022 STFT + DWT −
[112] 2020 DWT, Fourier transform, convolution block Freiburg
[113] 2021 DWT  +  Graph-regularized non-negative matrix factorization

(GNMF)
Freiburg

[114] 2017 Weighted visibility graph entropy Bonn Non-linear
[115] 2018 Fuzzy entropy, dispersion entropy Bonn
[116] 2018 Multifractal detrended fluctuation analysis Bonn
[117] 2019 Autoregressive model, firefly optimization Bonn
[118] 2021 Higuchi fractal dimension Bonn
[119] 2020 Approximate entropy, recurrence quantification analysis Bonn
[120] 2020 Lagged poincare plot Bonn
[121] 2018 Teager energy TUH
[122] 2019 Cross-bispectrum analysis Freiburg
[123] 2021 Sample entropy, higuchi fractal dimension Bern-Barcelona
[124] 2021 Spectral entropy, Katz & Sevcik fractal dimension CHB-MIT
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tion to the time-frequency analysis method, and re-expressed
the  non-stationary  EEG  signal  and  extracted  the  correspond-
ing  features  through  time-frequency  transformation  and
other means. Time-frequency analysis is mainly connected by
short-time  Fourier  transform  at  the  beginning,  but  because
the  size  and  shape  of  its  window  are  fixed,  it  cannot  be  well
adapted to EEG signals with fast frequency and time changes.
The  wavelet  transform  adaptively  changes  the  shape  of  the
time  window  through  stretching  and  translation,  so  wavelet
analysis  is  a  representative  method  of  time-frequency  analy-
sis.  In  addition  to  wavelet  analysis,  commonly  used  time-fre-
quency  domain  analysis  methods  include  wavelet  packet
decomposition, Gabor transform and so on[99−113].

Methods  such  as  time  domain,  frequency  domain  or
time-frequency  analysis  are  mainly  based  on  the  theoretical
analysis of linear systems. Since EEG signals have obvious non-
linear  characteristics,  processing  methods  for  nonlinear  sig-
nals  are  needed.  Therefore,  nonlinear  dynamics  theory  is
widely  used  in  the  field  of  EEG  signal  processing.  Nowadays,
nonlinear  dynamic  indicators  such  as  approximate  entropy,
spectral  entropy  and  sample  entropy,  etc.  are  commonly
used in EEG signal analysis[114−124].

Table 2 summarizes the four types of features involved in
the automatic detection of epilepsy in recent years and the cor-
responding references. 

4.3.  Epilepsy detection algorithm based on classical

machine learning

In  the  epilepsy  detection  algorithms  based  on  classical
machine  learning,  data  preprocessing  of  EEG  signals,  effec-
tive  feature  extraction of  processed signals,  and classification
based  on  extracted  features  are  the  main  tasks  in  the  detec-
tion  algorithm.  Researchers  have  achieved  automatic  detec-
tion and the classification of epileptic signals by using time-fre-
quency  domain  methods[125] and  nonlinear  methods[115,126],
and  achieved  good  performance  test  results.  Most  methods
use  artificial  pre-designed  ideas  to  extract  features  from  EEG
signals,  such  as  using  spectrum[127] as  information  from  EEG
signals[128] for  automatic  detection  of  epileptic  seizures,
which  can  obtain  more  accurate  classification  results. Fig.  9
shows a typical random forest for epileptic seizure detection.

Gotman et al.[129] selectively recorded the EEG signals dur-
ing the interictal  and ictal  periods as  samples,  and used their
amplitude,  period  and  other  characteristics  to  distinguish
whether  the  samples  were  in  a  state  of  epileptic  seizures.
Zhang et  al.[130] obtained  effective  features  of  EEG  signals

through frequency slice wavelet transform and achieved a clas-
sification accuracy of  98.33% using a support vector machine
(SVM).  Shoeb et  al.[131] discussed  the  application  of  machine
learning in seizure detection using the CHB-MIT dataset scalp
EEG  and  achieved  satisfactory  performance.  Tiwari et  al.[132]

used a  local  binary  pattern (LBP)  method based on key point
calculations and an SVM classifier to classify epileptic seizures
and  no  seizures  and  achieved  an  accuracy  of  99.31%.  Al-
Hadeethi et  al.[81] used  the  covariance  matrix  to  reduce  the
dimensionality  of  the  EEG  signal,  extracted  its  statistical  fea-
tures  and  used  non-parametric  tests  to  obtain  the  set  with
the  most  significant  features,  and  used  an  adaptive-boosting
least-squares  support  vector  machine  (AB-LS-SVM)  classifica-
tion model to achieve satisfactory results (>99% accuracy). Vic-
nesh et al.[133] extracted nonlinear features from EEG data and
fed them into decision trees to classify different epilepsy cate-
gories.  Wang et  al.[134] proposed  a  three-classification  algo-
rithm  based  on  wavelet  transform  and  nonlinear  sparse
extremum  learning  machine  (SELM),  using  the  Daubechies
wavelet  to  decompose  the  EEG  data  set  of  the  University  of
Bonn  and  calculate  the  maximum  and  standard  values  of
each  sub-band,  and  finally  got  a  classification  accuracy  of
98.4%.  Sharma et  al.[135] used  a  method  for  automatic  detec-
tion  of  epileptic  seizures  based  on  time-frequency  flexible
wavelet  transform  and  fractal  dimension:  firstly,  the  time-fre-
quency  flexible  wavelet  transform  was  used  to  decompose
the  EEG  signal  into  sub-bands  and  calculate  the  fractal  of
each sub-band dimension, the obtained fractal dimension fea-
tures were input into the least squares SVM (LS-SVM) for classi-
fication.  This  method  achieved  an  accuracy  rate  of  98.5%  for
the classification of ictal  and interictal  periods in the epilepsy
data  set  of  the  University  of  Bonn.  Chen  D et  al.[136] decom-
posed  the  EEG  data  into  7  common  wavelet  families,
searched in different wavelet basis functions and decomposi-
tion  levels,  and  extracted  the  maximum  value,  mean  value,
variance,  demeanor,  skewness,  and  energy  in  each  sub-band
and  other  commonly  used  features,  where  the  method
achieved high accuracy (>90%) and low cost.  A tool  was pro-
posed  by  Selvakumari et  al.[137] using  four  features—entropy,
root  mean  square  (RMS),  variance,  and  energy.  Based  on
these  features,  the  detection  was  done  using  SVM  and  naive
Bayesian classifiers with a reported accuracy of 95.63%. Zavid
and  Paul[138] focused  on  classifying  the ‘ictal’ and ‘inter-ictal’
states, where they used four features discrete cosine transfor-
mation (DCT), discrete cosine transformation-discrete wavelet
transformations  (DCT-DWT),  singular  value  decomposition

 

Fig. 9. (Color online) A typical random forest for epileptic seizure detection.
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(SVD),  and  intrinsic  mode  function  (IMF);  the  obtained  sig-
nals  are  further  classified  by  LS-SVM  due  to  less  computa-
tional  cost.  There  are  still  many  excellent  research  results,  so
this article will not repeat them one by one.

Table 3 summarizes the epilepsy automatic detection algo-
rithms  and  corresponding  references  using  classical  machine
learning in recent years.

Classical  machine  learning  models  mainly  design  effec-
tive  features  artificially  based  on  signals.  This  stage  requires
researchers to have professional knowledge related to epilep-
tic EEG signals. Although the automatic seizure detection tech-
nology  based  on  classical  machine  learning  has  shown  good
accuracy  using  traditional  signal  processing  (signal  process-
ing,  SP)  and  machine  learning  techniques,  the  detection  and
classification  of  epileptic  EEG  signals  is  a  difficult  task.  Accu-
rately classified epileptic vs.  non-ictal  cases performed poorly
on  the  three-category  task  of  normal,  ictal,  and  interictal[151].
This  is  mainly  due  to  the  following  two  reasons:  1)  models
that  have  obtained  more  accurate  results  for  classification  of

binary  questions  are  not  suitable  for  classification  of  ternary
questions  and need to be redesigned;  2)  there  is  less  labeled
data available. 

4.4.  Epilepsy detection algorithm based on deep

learning

In recent years, with the rapid development of deep learn-
ing  (DL),  deep  neural  network  (DNN)  models  have  been
widely  used  in  various  fields.  As  a  class  of  machine  learning
methods,  deep learning can automatically  encode the hierar-
chical  structure  of  data-independent  elements  and  adapt  to
the internal structure of the data, thereby extracting deep fea-
tures  that  are  not  easy  to  be  observed  and  extracted.  Com-
pared  with  traditional  feature  extraction  models,  deep  learn-
ing  methods  eliminate  the  dependence  on  manually
extracted features. Fig.  10 shows a typical 2D-CNN for epilep-
tic seizure detection.

Convolutional neural network (CNN)-like models are capa-
ble  of  extracting  features  from  input  data.  With  the  continu-

 

Table 3.   Summary of epilepsy automatic detection algorithms using classical machine learning.

Author Classifier Feature Performance Dataset

Zhang[130] SVM Time–frequency Acc 98.33% Bonn
Shoeb[131] SVM Vector FPR 2/h CHB-MIT
Tiwari[132] SVM Local binary pattern Acc 99.31% Bonn
Al-Hadeethi[81] AB-LS-SVM Statistical features Acc 99%

Sen 99%
Bonn

Vicnesh[133] Decision tree Nonlinear Acc 99%
Sen 99%
Spec 88%

Bonn

Wang[134] SELM Daubechies wavelet Acc 98.4% Bonn
Sharma[135] LS-SVM Time–frequency Acc 98.5% Bonn
Chen[136] SVM DWT Acc >90% CHB-MIT & Bonn
Selvakumari[137] SVM & Bayesian classifiers Entropy, root mean

square (RMS), variance,
energy

Acc 95.7%
Sen 96.55%
Spec 95.63%

CHB-MIT

Parvez[138] LS-SVM DCT, SVD, IMF, DCTDWT Sen 91.36% Freiburg
Guo[139] ANN Line length Acc 99.6% Bonn
Yuan[140] ELM Time–frequency Sen 97.73%

False alarm rate 0.37/h
Freiburg

Raghu[141] Random forest, SVM,
KNN, adaboost

28 statistical and
time–frequency features

Acc 96.1%
Sen 97.6%
Spec 94.4%

Bern-Barcelona

Fasil[142] SVM Energy Acc 99.5% Bonn & Barcelona
Alickovic[143] ANN, KNN, SVM, random

forest
Mean, std dev, power,
skewness, kurtosis,
absolute mean

Acc 100% Freiburg & CHB-MIT

Chen[105] LS-SVM 8 types of entropy Acc 99.5%
Sen 100%
Spec 99.4%

Bonn

Tzimourta[144] Random forest DWT Sen 99.74%
FPR 0.21/h

Bonn & Freiburg

Birjandtalab[145] ANN Spectral power F-meas 86 CHB-MIT
Wang[146] Random forest STFT, mean, energy, std

dev
Acc 96.7% Bonn

Yan[147] Boosting Stockwell Sen 94.26%
Spec 96.34%

Freiburg

Mursalin[148] SVM, NB, KNN, random
forest, logistic model
trees (LMT)

15-features Acc 97.4%
Sen 97.4%
Spec 97.5%

Bonn

Siddiqui[149] Decision tree, random
forest, boosting

9 statistical features Pre 96.67%
Rec 74.36%
F-measure 84.06%

CHB-MIT

Mursalin[150] Random forest Entropy and DWT Acc 98.45% Bonn
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ous  research  of  deep  learning  theory  by  researchers  and  the
improvement  of  numerical  computing  hardware  equipment,
CNN  has  developed  rapidly  in  recent  years,  and  various  CNN
models  such  as  AlexNet,  VGG  and  3D  network[152] have  been
rapidly  applied  to  many  fields.  Acharya et  al.[78] implemented
a  13-layer  deep  convolutional  neural  network  to  detect  nor-
mal,  pre-seizure  and  seizure  categories.  The  accuracy,  speci-
ficity  and  recall  of  this  method  were  88.67%,  90%  and  95%,
respectively. Jana et al.[153] proposed a combination of generat-
ing  a  spectrogram  matrix  and  a  one-dimensional  convolu-
tional neural network to detect epileptic seizures from EEG sig-
nals,  and  its  accuracy  demonstrated  that  the  scheme  could
serve as a  useful  epilepsy detection technique.  Avcu et  al.[154]

proposed  a  seizureNet  method,  which  uses  Fourier  trans-
form  to  convert  the  original  signal  into  a  time-frequency
map,  and  then  uses  a  convolutional  neural  network  to
achieve  automatic  detection  of  epilepsy.  Bizopoulo et  al.[155]

used various networks as  detection models  to detect  imaged
EEG  signals,  including  AlexNet,  VGGNet,  ResNet,  DenseNet
and other convolutional neural network models.

A recurrent neural  network (RNN) focuses on the correla-
tion  of  outputs  at  different  times  in  the  sequence.  Among
them,  a  long-short-term memory network  (LSTM)  is  the  most
widely  used  model  in  RNN,  which  can  fully  demonstrate  its
superior  performance  in  the  processing  of  time  series  prob-
lems.  Hu et  al.[84] proposed  a  new  method  for  seizure  detec-
tion  based  on  a  deep  two-way  long  short-term  memory  (Bi-
LSTM)  network,  which  achieved  an  average  sensitivity  of
93.61%  and  an  average  specificity  of  91.85%.  Thara et  al.[156]

used  a  stacked  bidirectional  long-short-term  memory  net-
work to detect onset and interictal periods, achieving the high-
est  accuracy  of  99.08%  and  recall  of  99.5%.  The  deep  learn-
ing  method  of  end-to-end  learning  avoids  the  inappropriate
selection  of  a  feature  extractor  and  a  feature  subset  selector
to  extract  and  select  the  most  discriminative  features,  mak-
ing  the  detection  results  more  accurate.  Roy et  al.[157]

adopted a 5-layer GRU network ChronoNet, and the final classi-
fication  result  reached  92.84%.  Tsiouris et  al.[158] constructed
a two-layer LSTM network, using four preictal windows of dif-
ferent lengths for seizure prediction tasks, the LSTM model suc-
cessfully  predicted  all  185  seizures  using  the  previously
extracted features,  significantly  improving the seizure predic-
tion  performance.  There  are  still  many  excellent  research
results, so this article will not repeat them one by one.

Since  the  automatic  detection  of  epileptic  EEG  signals
has a significant effect on the clinical  diagnosis  of  epilepsy,  it
is  necessary  to  study  automatic  detection  based  on  various
models. Table  4 summarizes  the  epilepsy  automatic  detec-
tion  algorithms  and  corresponding  references  using  deep
learning in recent years. 

4.5.  Epilepsy detection hardware implementation

At  present,  researchers  have  developed  many  complete
systems for  detecting and predicting epilepsy.  These systems
have  the  advantages  of  high  accuracy  and  energy  saving,
which  provide  ideas  and  hope  for  the  development  of  wear-
able epilepsy monitoring equipment.

Yoo et al. proposed an ultra-low power scalable EEG acqui-
sition  system  on  Chip  (SoC)  for  continuous  seizure  detection
and  recording,  with  a  fully  integrated  patient-specific  Sup-
port  Vector  Machine  (SVM)-based  classification  processor.
With  the  SoC,  a  small  form  factor,  patch-type  long-term
seizure monitoring and recording device can be realized.  The
SoC  integrates  eight-channel,  bandwidth  and  gain-scalable
AFE  with  low  noise,  low  power  instrumentation  circuits,  an
ADC,  eight-channel  classification  processor,  and  storage  on  a
single  25  mm2 chip  (0.18 μm  1P6M  standard  CMOS).  The
seizure  detection  processor  is  tested  with  the  CHB-MIT
database,  and  the  SoC  is  verified  with  a  rapid  eye  blink  test,
which shows typical accuracy of 84.4% with 2.03 μJ/classifica-
tion energy efficiency[64].

Altaf et  al. proposed  a  16-channel  noninvasive  closed-
loop  beginning- and  end-of-seizure  detection  SoC.  The  dual-
channel  charge  recycled  (DCCR)  analog  front  end  (AFE)
achieves  chopping  and  time-multiplexing  an  amplifier
between two channels simultaneously which exploits fast-set-
tling  DC  servo-loop  with  current  consumption  and  NEF  of
0.9 µA/channel and 3.29/channel, respectively. The dual-detec-
tor  architecture  (D2A)  classification processor  utilizes  two lin-
ear support-vector machine (LSVM) classifiers based on digital
hysteresis  to  enhance  both  the  sensitivity  and  the  specificity
simultaneously.  The  pulsating  voltage  transcranial  electrical
stimulator  (PVTES)  automatically  configures  the  number  of
pulses  to  control  the  amount  of  charge  delivered  based  on
skin-electrode  impedance  variation  in  efforts  to  suppress  the
seizure activity,  while burning only 2.45 µW. The 25 mm2 SoC
implemented  in  0.18 µm  CMOS  consumes  2.73 µJ/classifica-
tion  for  16  channels  with  an  average  sensitivity,  specificity,
and latency of 95.7%, 98%, and 1 s, respectively[170].

Altaf et al. proposed an eight-channel patient specific scal-
able  EEG  acquisition  SoC  to  continuously  detect  the  patient-
specific  seizure  electrical  onset.  A  non-linear  machine  learn-
ing  algorithm  is  employed  using  a  0.18 μm  1P6M  standard
CMOS  process  with  an  area  of  25  mm2.  The  SoC  integrates
the  multi-channel  analog  front-end  with  low-noise,  low-
power instrumentation circuits, an ADC, a classification proces-
sor,  and  an  SRAM.  The  seizure  detection  processor  is  tested
with CHB-MIT database, and the SoC is verified with rapid eye
blink  tests,  which  shows  the  sensitivity  of  95.1%  and  0.27
false alarm/hour while consuming 1.83 μJ/classification[171].

Lin et al. proposed a smart headband for epileptic seizure

 

Fig. 10. (Color online) A typical 2D-CNN for epileptic seizure detection.
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detection. The proposed headband consists of four key compo-
nents:  1)  an  analog front-end circuitry;  2)  an  epileptic  seizure
detection  tag  (ESDT);  3)  a  bluetooth  low-power  chip;  and  4)
customized  electrodes.  The  overall  system  is  fully  integrated
into  a  fabric  headband  weighting  only  50.3  g  and  dissipates
55.89 mW. This  compact  smart  headband with a  correspond-
ing  APP  for  epileptic  seizure  detection  can  mprove  the
patients’ quality  of  life  by  monitoring  their  health  onditions
at anytime and anywhere. The epileptic seizure detection algo-
rithm inside ESDT is validated by using Boston Children’s Hos-
pital’s  CHB-MIT  scalp  EEG  clinical  database  with  the  detec-
tion rate of 92.68% and the false alarm of 0.527 h−1[172].

Huang et  al. proposed  the  first  support  vector  machine
(SVM)  processor  that  supports  on-chip  active  learning  for
seizure  detection.  Alternating  direction  method  of  multipli-
ers  (ADMM),  minimum-redundancy  maximum-relevance
(mRMR),  and  low-rank  approximation  are  utilized  to  reduce

the computational complexity and memory storage by 99.4%
and  90.4%,  respectively.  Hardware  complexity  is  reduced  by
87% through folded architecture with reconfigurable process-
ing  elements.  The  4.5  mm2 SoC  implemented  in  40  nm
CMOS,  achieving  the  best  detection  performance  with  a
96.1%  accuracy  and  a  0.34%  false  alarm  rate  in  0.71  s  with
1.9 mW[173].

Liu et al. proposed a reconfigurable biomedical AI proces-
sor with adaptive learning. It is mainly composed of five mod-
ules:  a  reconfigurable  neural-network  engine  (RNNE),  various
biomedical-processing  engines  (BPEs),  an  adaptive-learning
engine  (ALE),  a  reconfigurable  FIR  engine  (RFE)  and  an  adap-
tive  biomedical  signal  compression  engine  (ABSCE).  For  an
EEG  seizure  detection  task  using  the  Bonn  database,  two-
stage  event-driven  AI  processing  is  enabled.  Compared  to
non-event-driven  AI  processing,  the  power  consumption  can
be significantly reduced by 49% with accuracy of 99.84%. The

 

Table 4.   Summary of epilepsy automatic detection algorithms using deep learning.

Author Classifier Feature Performance Dataset

Acharya[78] Deep CNN Z-score normalization, zero mean, std dev Acc 88.7%
Sen 95%
Spec 90%

Bonn

Jana[153] CNN Spectrogram matrix Acc 77.57% CHB-MIT
Avcu[154] CNN Time–frequency Spec 95.8%

False alarm rate 0.17 h−1
CHB-MIT

Hu[84] Bi-LSTM Statistical features Sen 93.61%
Spec 91.85%

CHB-MIT

Thara[156] Bi-LSTM Raw signal Acc 99.08%
Sen 89.21%

Bonn

Roy[157] ChronoNet Raw signal Acc 92.54 TUH
Tsiouris[158] LSTM Statistical moments, zero crossings, wavelet

transform coefficients, PSD, cross-correlation,
graph theory

FPR 0.11–0.02 FP/h CHB-MIT

Akut[159] CNN DWT Acc 99.4%
Sen 98.5%
Spec 99.45%

Bonn

Ashokkumar[108] Deep CNN DWT fractional
S-transform, entropy

Acc 99.7%
Sen 97.71%
Spec 98.7%

Bonn

Gao[119] CNN Approximate entropy, recurrence
quantification analysis

Acc 99.26%
Sen 98.84%
Spec 99.26%

Bonn

Gabr[160] CNN Time-frequency STFT spectrogram, scalogram Acc 97% CHB-MIT
Bhandari[111] Modified tunicate swarm,

LSTM
STFT + DWT Acc 96.87%

Sen 98.7%
CHB-MIT

Zhang[161] Deep CNN, ImageNet STFT Acc 97.75% CHB-MIT
Akbarian[162] Autoencoder NN DFT, effective brain connectivity Acc 97.91%

Sen 97.65%
Spec 98.06%

CHB-MIT

Priyasad[163] Deep CNN Attentive feature fusion F1-score 96.7% TUH
Zhao[164] Linear graph

convolution network
Pearson correlation Acc 99.3%

Sen 99.43%
Spec 98.82%

CHB-MIT

Jang[165] Neural network with
weighted fuzzy
membership (NEWFM)

DWT and phase-space reconstruction Acc 97.5%
Sen 95%
Spec 100%

Bonn

Ma[166] CNN + RCNN Raw signal Acc 100%
Sen 100%
Spec 100%

Bonn

Nogay[167] CNN + Alexnet STFT spectogram Acc 100% Bonn
Yildiz[168] CNN, Alexnet, resnet-18,

googlenet
STFT spectogram, scalogram Acc 100% Bonn

Sui[169] CNN Normalization, STFT Acc 91.8% Bern
Barcelona
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1.74  mm2 SoC  implemented  in  60  nm  CMOS  consumes
2.06 µJ/classification[174].

Zhang et  al. proposed a  fully  programmable patient-spe-
cific  closed-loop  epilepsy  tracking  and  suppression  SoC.  The
proposed two-cycle analog front end (2C-AFE) obtains a 9.8-b
effective number of bits (ENOB) with 8 × capacitive digital-to-
analog converter (CAPDAC) area reduction and 4 × switching
energy  saving compared to  a  conventional  10-b  SAR with  an
identical  unit  capacitor  size.  The  entire  SoC  with  16  surface
EEG  recording  channels  consumes  an  ultra-low  energy  of
0.97 µJ/class and occupies a miniaturized area of 0.13 mm2/ch
in 40 nm CMOS, achieving real-time concurrent seizure detec-
tion  and  raw  EEG  recording.  Verified  with  the  CHB-MIT
database,  the  guided  time-channel  averaging  (GTCA)  neural
processor achieves the vector-based sensitivity, the specificity,
and  the  latency  of  97.8%,  99.5%,  and  <1  s,  respectively[175].

Zhu et  al. proposed  a  model  for  seizure  detection  based
on 1D-CNN, which loses only a small  amount of  accuracy but
greatly reduces computational complexity and model size. Fur-
thermore,  a  low  power  consumption  and  high  efficiency
based  on  1D-CNN  hardware  accelerator  architecture  is  pro-
posed.  It  only  takes  170 μs  to  perform  a  round  of  inference
on Xilinx ZC706 evaluation platform at 200 MHz, which is much
more  efficient  than  other  hardware  network  accelerators[176].

Chua et  al. proposed  SOUL:  Stochastic-gradientdescent-
based Online Unsupervised Logistic regression classifier. After
an  initial  offline  training  phase,  continuous  online  unsuper-
vised classifier updates are applied in situ, which improves sen-
sitivity  in  patients  with  drifting  seizure  features.  SOUL  was
tested  on  two  human  EEG  datasets:  the  Children’s  Hospital
Boston  and  the  Massachusetts  Institute  of  Technology  (CHB-
MIT)  scalp  EEG  dataset  and  a  long  (>100  h)  intracranial  EEG
dataset. It was able to achieve an average sensitivity of 97.5%
and  97.9%  for  the  two  datasets,  respectively,  at  >95%  speci-
ficity.  Sensitivity  improved  by  at  most  8.2%  on  long-term
data  when  compared  to  a  typical  seizure  detection  classifier.
SOUL  was  fabricated  in  Taiwan  Semiconductor  Manufactur-
ing  Company  (TSMC’s)  28  nm  process  occupying  0.1  mm2

and  achieves  1.5  nJ/classification  energy  efficiency,  which  is
at least 24 × more efficient than state-of-the-art[177].

Li et  al. proposed  a  novel  low-latency  parallel  Convolu-
tional Neural Network (CNN) architecture that has between 2-
2800  ×  fewer  network  parameters  compared  to  state-of-the-
art (SOTA) CNN architectures and achieves 5-fold cross valida-

tion  accuracy  of  99.84%  for  epileptic  seizure  detection,  and
99.01% and 97.54% for epileptic seizure prediction, when eval-
uated  using  the  University  of  Bonn  EEG,  CHB-MIT  and  SWEC-
ETHZ  seizure  datasets,  respectively.  They  investigated  the
effects of non-idealities on our system and investigate quanti-
zation aware training (QAT) to mitigate the performance degra-
dation  due  to  low  analog-to-digital  converter  (ADC)/digital-
to-analog  converter  (DAC)  resolution.  Finally,  we  propose  a
stuck  weight  offsetting  methodology  to  mitigate  perfor-
mance  degradation  due  to  stuck  RON/ROFF  memristor
weights,  recovering  up  to  32%  accuracy,  without  requiring
retraining.  The  CNN  component  of  their  platform  is  esti-
mated  to  consume  approximately  2.791  W  of  power  while
occupying an area of 31.255 mm2 in a 22 nm FDSOI CMOS pro-
cess[178]. Table  5 summaries  the  performance  of  existing
seizure detection/prediction systems. 

5.  Conclusion and outlook

Automatic detection of epilepsy, that is, automatic identifi-
cation of epileptic seizures, can greatly reduce the burden on
medical workers and reduce the uncertainty of doctors' subjec-
tive judgment of the disease. Since EEG is a low-cost, easy-to-
acquire  and  non-invasive  clinical  physiological  signal,  EEG-
based  automatic  detection  of  epilepsy  is  an  effective  means
to  improve  the  efficiency  of  epilepsy  detection  and  treat-
ment.  This  paper  first  systematically  expounds the process  of
automatic  detection  of  epilepsy  based  on  EEG,  and  conducts
a  detailed  and  comprehensive  investigation  and  summary  of
the specific methods involved in each step.

According  to  the  above  research  and  analysis,  combined
with  the  actual  application  scenario  requirements  of  EEG-
based automatic  epilepsy detection,  this  paper looks forward
to the future research direction from the following aspects:

(1) The low-power design of wearable devices is the gen-
eral trend. It is necessary to study circuit design schemes suit-
able  for  different  processes  at  lower  power  supply  voltages,
and reduce the demand for low-pass filters by optimizing the
bandwidth  of  the  front-end  amplifier,  thereby  saving  power
consumption. Hardware performance such as common-mode
rejection  ratio,  analog-to-digital  conversion  accuracy  and
speed,  and  dynamic  range  is  the  guarantee  for  the  accuracy
of EEG acquisition signals and the basis for subsequent EEG sig-
nal  processing  and  criteria.  For  dry  electrodes  and  non-con-

 

Table 5.   Performance summary and comparison of existing seizure detection/prediction systems.

Reference Technology
(nm)

Algorithm Analog
front-End

Feature
extract

Energy efficiency
(µJ/class)

Accuracy
(%)

Dataset

[64] 2013 180 BPF, LSVM Yes Yes 2.03 84.4 CHB-MIT

[170] 2015 180 BPF, D2A−LSVM Yes Yes 2.73 − CHB-MIT
[171] 2016 180 BPF, NL−SVM Yes Yes 1.83 95.1 CHB-MIT
[172] 2018 180 FFT, LDA Yes Yes − 92.68 CHB-MIT

[173] 2020 40 FFT, NL−SVM No Yes 1.35 × 103 96.1 CHB-MIT
[174] 2021 65 RNNE No Yes 2.06 97.1 Bonn
[175] 2022 40 GTCA-SVM Yes Yes 0.97 − CHB-MIT
[176] 2021 − 1D-CNN No No − 97.35 CHB-MIT

[177] 2022 28 Logistic regression,
SGD

Yes Yes 1.5 × 10−3 − CHB-MIT,
iEEG

[178] 2022 22 Manual feature
extraction, CNN

No No 1.24 × 10−3 99.84
97.54

Bonn,
CHB-MIT,
ETHZSWEC
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tact  electrode  systems,  motion  artifacts  will  seriously  affect
the normal operation of the AFE circuit,  and it  is necessary to
study  the  analog  circuit  suppression  method  for  motion  arti-
facts  combined with electrode impedance detection technol-
ogy.

(2)  When  using  traditional  machine  learning  methods,
extracting  effective  classification  features  is  the  key  to
epilepsy  detection.  Seizure  detection  by  traditional  methods
has  achieved  a  high  level  of  detection,  but  how  to  distin-
guish  epilepsy  subtypes,  how  to  distinguish  between  onset
and  interictal  periods  to  realize  the  prediction  of  epilepsy,  is
still a problem worth exploring.

(3)  In  recent  years,  with  the  rapid  development  of  deep
learning,  a  large  number  of  automatic  detection  methods
based  on  deep  learning  have  been  widely  used  in  automatic
detection  of  epilepsy,  and  achieved  good  results.  However,
this method also has many challenges. a) Deep learning often
relies  on  a  large  amount  of  data,  but  limited  by  the  data  set
in  actual  research,  it  is  difficult  to  obtain  a  large  number  of
training samples, which will have a great impact on the accu-
racy  and  robustness  of  the  model.  b)  The  existing  public
datasets are almost all EEG signal fragments, which are differ-
ent from the continuous real-time signals in the actual scene.
When  solving  practical  problems,  the  neural  network  model
trained  with  EEG  fragment  signals  may  not  be  well  adapted
to  the  real  scene.  c)  Due  to  the  limited  computing  resources
in  actual  use,  lightweight  neural  network  models  will  be
more practical.

(4)  With  the  continuous  development  of  wearable
devices,  in  addition to  the  existing feature  extraction for  EEG
signals, the fusion of other physiological features also has con-
siderable  research  value.  Previous  studies  have  shown  that
blood oxygen saturation is related to the termination of epilep-
tic  seizures[179].  Combining  such  other  characteristic  indica-
tors  with  EEG,  and  using  machine  learning  methods  such  as
multi-view for automatic detection of epilepsy, is expected to
further improve the detection accuracy. 
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